
Generalized Network Dismantling (GND):
Response to the blog post by Petter Holme

June 21, 2019

In this short report, we respond to the following blog post 1, written by Petter Holme
(P.H.).

Summary

• The results from the PNAS paper on Generalized Network Dismantling2 are repro-
ducible with our code3.

• The algorithm for eigenvector approximation that we used in the PNAS paper produces
good partitions with the optimization settings of our paper.

• We clarify the relation between network dismantling and generalized network dismant-
ling in more details.

We think that it is very inadequate to present our paper as an example of ”non-reproducible
research,” and even more so as the only example discussed.

Yours sincerely,

Xiao-Long Ren and Nino Antulov-Fantulin

1https://petterhol.me/2019/05/17/reproducing-computational-studies-in-general-and-

general-network-dismantling-in-particular/
2https://doi.org/10.1073/pnas.1806108116
3https://github.com/renxiaolong/Generalized-Network-Dismantling

1

https://petterhol.me/2019/05/17/reproducing-computational-studies-in-general-and-general-network-dismantling-in-particular/
https://petterhol.me/2019/05/17/reproducing-computational-studies-in-general-and-general-network-dismantling-in-particular/
https://doi.org/10.1073/pnas.1806108116
https://github.com/renxiaolong/Generalized-Network-Dismantling

1 Random numbers

P.H.’s comment:“as I looked at the code I noticed that they initialized the random number
generator to the default seed (1) at every call of the function partitioning the graph. In other
words, they did not really using random numbers, at least not as the praxis is in the field.
After fixing that, the output started depending on the seed. Here is the figure (Fig. S5) that
I aimed to reproduce. The (GND) line of the paper is (in black) and 10 runs of the my code
with the handling of random numbers fixed (in color).”

Our reply: We have used pseudorandom numbers with C++11 according to the standard
Mersenne Twister generator4 (periodicity of 219937 − 1) with a default seed. This is our
implementation of the proposed GND method from our paper, which is reproducible with our
seed. Re-implementing our method in a different way (e.g. different seeds, random number
generators) may lead to some variability in results, but this is not to be misinterpreted as a
sign of non-reproducibility.

The choice of seed does not really matter, because in our paper we present convergence
proofs, which are not dependent on the initial seed (see Figure 2(A)-(C) for an illustration).
Finally, Fig. 2(D) shows that we do not necessarily have to wait for full convergence because
we are getting excellent results even before that point.

PH’s implementation5 uses the routine ARPACK and, with this, a different random
number generator to determine v2. If one looks at the code (line 194) of ARPACK, one
can find the default seed that is being used6. For symmetric matrices, ARPACK is us-
ing an algorithmic variant of the Lanczos process called the Implicitly Restarted Lanczos
Method (IRLM). Interestingly, if one tries to re-implement ARPACK library or plays with
its seed, “non-deterministic” (and, therefore, apparently non-reproducible) outputs may re-
sult. One can find dozens of posts on the Internet about such “non-deterministic” behaviour
of ARPACK. For example, we have found that P.H.’s ARPACK implementation produces
“non-deterministic” results with the Python3 version, see Fig 1.

Results from our paper were obtained by our PNAS GitHub code, which was compiled
with the MCVC 7 C+11 compiler, and now we have additionally reproduced results with
GCC compiler. Note that the MSVC compiler C+11 uses the Mersenne Twister generator
and the GCC compiler uses multiplicative congruential pseudo-random number generator as
a default one. Therefore, in order to have reproducible results across different platforms, one
just needs to specify that ”std::default random engine” should be ”std::mt19937”. We have
tested our public GitHub code across different platforms and we are getting the same results
if only ”std::mt19937” is specified. We will add this detail in our description on GitHub.

4Matsumoto, M.; Nishimura, T. (1998). ”Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator” (PDF). ACM Transactions on Modeling and Computer Simulation. 8
(1): 3–30

5https://github.com/pholme/gnd
6https://github.com/scipy/scipy/blob/v0.15.1/scipy/sparse/linalg/eigen/arpack/ARPACK/

SRC/cgetv0.f
7https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

2

https://github.com/pholme/gnd
https://github.com/scipy/scipy/blob/v0.15.1/scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/cgetv0.f
https://github.com/scipy/scipy/blob/v0.15.1/scipy/sparse/linalg/eigen/arpack/ARPACK/SRC/cgetv0.f
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

0 0.1 0.2 0.3 0.4
Dismantling cost (unit case) - Petster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

PH's code on Python 3.6.4

0 0.1 0.2 0.3 0.4
Dismantling cost (unit case) - Petster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

PH's code on Python 3.6.4
[without Shuffle() function]

0 0.1 0.2 0.3 0.4
Dismantling cost (unit case) - Petster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

PH's code on Python 3.7.2
 [without shuffle() function]

Figure 1: Non-deterministic behaviour of P.H.’s code on different python versions. On
Python2 it produces deterministic results. However, it produces non-deterministic results on
different versions of Python3.

2 Eigenvectors

P.H.’s comment:“It turns out that the authors solve the eigenvector problem not by calling
a linear-algebra library routine, but their own power iteration. The core of linear algebra
libraries (BLACS) is optimized to an incredible level.”

Our reply: This is correct, however it is not a bug, but a feature. It is not necessary
to determine exactly an eigenvector of the second smallest eigenvalue. Determining it is
unnecessarily time-consuming and it is numerically inefficient. In our PNAS Appendix,

3

section 3, we provide a detailed analysis, why a linear combination of eigenvectors can (also)
be close to the minimum of our objective function (Rayleigh quotient), which is easier to
find. Variants of these statements are known for a long time 8. In case of interest in any
further details on this, see Appendix 5.1. of this response.

2.0.1 Convergence

In P.H.’s re-implementation (with different seeds) the largest variability occurs in the Petster
network, so here we will study the performance of dismantling results with different seeds and
iterations. In our paper, we have shown that, one can expect asymptotically good partitions

with O(log(n)1+ε), where ε > 0. In our Github code, we have used M = a ∗ log(n) ∗
√
log(n)

iterations, where a = 30. In Fig. 2(A), we show the curves for a = 30 and 10 different seeds.
Figs. 2(B) and (C) are for 200 ∗M and 500 ∗M iterations. We find convergence for 500 ∗M .
However, simulating for a longer time does not mean that the dismantling performance is
better. To demonstrate this, let us measure the difference of dismantling performances

GCC500∗M(c)−GCCM(c),

where GCCx(c) denotes the size of the Giant Connected Component obtained by GND al-
gorithm with x spectral approximation iterations for the cost c. If this difference is positive
on average, it means that dismantling with M iterations performs better. In order to assess
the situation, we create a histogram of dismantling differences over all possible costs and
different seeds. In 2(D), we observe that in the majority of cases there is no benefit of using
500 times more iterations for dismantling, on the contrary.

2.0.2 Comparison of ARPACK and GND partitions

In Fig. 3, we compare ARPACK [P.H. version] and GND [PNAS version] algorithms. We can
observe that the ARPACK version is not outperforming, but takes approximately 25 times
more time to compute.

Why there is a small difference in results w.r.t. code from P.H. that uses the ARPACK
library? The difference comes from the fact that we can also take a linear combination of
eigenvectors (rather than the eigenvector corresponding to the second smallest eigenvalue)
as long as they are close to the minimum of the objective function (as we have explained
in the Appendix of the main PNAS paper). This can be important when there is no clear
spectral gap between second and third eigenvalue. Furthermore, due to the possibility of
having an algebraic/geometric multiplicity of the Laplacian eigenvalues greater than 1, there
is no surprise in having different eigenvectors that are considered equivalent in a partition
of graphs w.r.t the graph-cutting objective. See Appendix 5.2. of this response for more
experimental details.

8 Alpert et. al. (1999), ”Spectral partitioning with multiple eigenvectors”, Discrete Applied Mathematics
90 1-3.

4

0 0.1 0.2 0.3 0.4
Dismantling cost(unit case) - Petster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

A

0 0.1 0.2 0.3 0.4
Dismantling cost(unit case) - Petster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

B

0 0.1 0.2 0.3 0.4
Dismantling cost(unit case) - Petster

0

0.2

0.4

0.6

0.8

1

G
C

C
 S

iz
e

C

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
GCC with 500*M iterations - GCC with M iterations

0

50

100

150D

Figure 2: Convergence of dismantling curves. (A)-(C) show numerical results for 10
different seeds: (A) for M iterations, (B) for 200 ∗M iterations, (C) for 500 ∗M iterations,

where M = 30 ∗ log(n) ∗
√
log(n) (as in our PNAS paper). Even when seeds are chosen

differently, all curves have converged to the same curve for 500 ∗ M , as seen in (C). (D)
We measure the difference in the dismantling performance GCC500∗M(c)−GCCM(c), where
GCCx(c) denotes the GND algorithm with x spectral approximation iterations for cost c.
The graphic shows the histogram of differences in GCC over all possible costs for different
seeds. We observe that the majority of differences is positive, which implies having a smaller
GCC for the same cost for our settings, i.e. a better performance of the algorithm.

3 On the generalization

P. H.’s comments: “The authors code output nodes of the vertex cover set (step 2 above)
in order of decreasing degree (for the degree-weight case) or increasing degree (for the unit-
weight case). This is a bit curious because one can no longer get the unit-degree case by

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Dismantling cost (unit case)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
C

C

P.H. ARPACK GND [execution time 15.4 sec]
GND algorithm [execution time 0.6 sec]

Figure 3: Comparison of dismantling curve of P.H. ARPACK version [Python2
version] (in blue) and GND PNAS version (in black) on the Petster network. The
GND [PNAS variant] gets smaller GCC (better dismantling) over all costs and is 25 times
faster. Results are reproducible over different platforms.

replacing degrees by one somewhere in the algorithm (so it is no longer generalized network
dismantling).”

Our reply: Note that the term Generalized Network Dismantling refers to the novel
problem formulation with non-unit costs. In our proposed method when W = I, the weighted
partitioning problem becomes equal to the standard spectral partitioning problem and fine-
tuning mechanism turns from weighted vertex cover to a normal vertex cover. Note, that
the fine-tuning mechanism produces a set of nodes, with no ordering. However, it is allowed
to use some topological properties for ordering the nodes from this set in the network
dismantling problem, as long as the costs are still unit.

4 Conclusion

We have rechecked our code and can confirm that it reproduces the results reported in our
PNAS paper. Insofar, it is inadequate to call our results non-reproducible.

However, we would like to stress that, P.H.’s code, may produce “non-deterministic” (i.e.
platform-dependent) outputs. Our code can only produce “non-deterministic” results if one
is changing seeds or random number generators. We have presented a simple way how our

6

code can become cross-platform reproducible. Most importantly, however, it does not matter
for sufficiently many iterations. In our paper, we have presented proofs that the algorithm
converges to some vector that minimises the cut objective function independently of the
initial seed (as long as the sequence of pseudorandom numbers preserves certain statistical
properties). Furthermore, we have also shown that even a linear combination of eigenvectors
v2, ..., vk is a good approximation if the λ2 ≈ λ3 ≈ ... ≈ λk < λk+1. In such cases, our
method requires much less iterations than it would take to get the accurate estimation of
the v2 (which P.H.s ARPACK method is trying to do). In other words, our algorithm may
be more difficult to understand, but it is more efficient (25 times more faster on the Petster
network).

Finally, the second eigenvector is the analytical solution for the relaxed formulation of
the true dismantling objective function, which is NP-hard (see our PNAS Appendix, section
7 for more results). Furthermore, in our PNAS paper, we are not claiming that one can not
produce better results then our proposed method for the generalized network dismantling
problem. Actually, we think that there are multiple open research frontiers. If one can find
better method, we encourage writing a new publication.

We would like to thank P.H. for the feedback on our paper, which allowed us to clarify a
number of interesting points. However, we would like to ask to add a disclaimer and add a
link to our response in the blog post or make some other measure which is going to reduce
the potential unfair negative effects on our work.

7

5 Appendix

5.1 Theoretical analysis around eigenvector optimization

Recall that the idea behind spectral clustering is this: For a vector v with entries drawn from
{−1, 1}, the quantity vTLv

vT v
corresponds to the cut-size. So we search the balanced vector x

that minimizes this quantity in the relaxed case (that is, unit vectors that are orthogonal to
~1 but have entries that are not necessarily in {−1, 1}) and this happens to be the normalized
eigenvector corresponding to the second smallest eigenvalue (or some of those eigenvectors,
if this eigenvalue has multiplicity > 1). Then we replace the positive entries by 1 and the
negative entries by −1 and hope that this newly obtained vector (which I will now denote

x̃), gives us a value x̃TLx̃
x̃T x̃

which is small too and hence gives us a small cut-size. This is
a standard relaxation of the NP-hard problem. However, there is no guarantee 9 that this
heuristics will preserve the optimality when passing from x to x̃. Furthermore, since any
iterative method gives us only an approximation to the exact second eigenvector, we will get
a value of xTLx

xT x
, which is only ε-close to the minimum. Therefore it is just as good to find any

balanced vector x′ for which x′TLx′

x′T x′
is ε-close to the minimum (of course this will give us dif-

ferent results, sometimes better sometimes worse, but there is no reason why the so obtained
partition would be generally better or worse). How far this vector x′ is from the exact second
eigenvector in any particular vector norm (or how large the hamming distance between x̃
and x̃′ is) is completely irrelevant. Now the important thing here is, that computing such a
vector x′ is computationally much less demanding than finding an approximation of the exact
second eigenvector. And that is precisely the reason why computing the second eigenvector
with any linear algebra library (no matter how optimized it is) would be inefficient. It is ”too
much”. For example if L had several eigenvectors with eigenvalues close (but not equal) to
the second, any iterative method would need to do many iterations to distinguish between
the different eigenvectors and get to a vector that is close to the exact second eigenvector
with respect to any particular norm. However, already after few iterations we would have a
vector x for which xTLx

xT x
is ε-close to optimal.

5.2 ARPACK and GND spectral approximation

We will exemplify the source of the difference between ARPACK and GND approximations by
using only one spectral partition without a fine-tuning mechanism. In Fig. 4, we calculate
only the effect of spectral partitioning (without fine-tuning effect). In this scenario, we
remove all the nodes i whose corresponding value in the estimated eigenvector is non-negative
(v

(2)
i ≥ 0) and has a neighbour j with a negative entry (v

(2)
j < 0). The ordering of the removed

nodes follows their fixed index in the network. In Fig. 4(A), we show the spectral partitioning
based on this strategy for ARPACK and GND with M iterations. Here we observe that the
ARPACK partition is not better than the GND spectral partition.

Alternatively, we remove all the nodes i whose corresponding value in the estimated eigen-
vector is negative (v

(2)
i < 0) and has a neighbour j with a non-negative entry (v

(2)
j ≥ 0). In

9Guattery et. al. (1998), “On the quality of spectral separators”, SIAM J. Matrix Anal. Appl. 19-3

8

0 0.02 0.04 0.06 0.08 0.1
Dismantling cost (unit case) - Pester

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
G

C
C

 s
iz

e

Only Spectral Paritioning

GND [M iters] vi>=0 cover removed
ARPACK vi>=0 cover removed

A

0 0.05 0.1 0.15 0.2 0.25 0.3
Dismantling cost (unit case) - Pester

0.4

0.5

0.6

0.7

0.8

0.9

1

G
C

C
 s

iz
e

Only Spectral Paritioning

GND [M iters] vi<0 cover removed
ARPACK vi<0 cover removed

B

Figure 4: GND and ARPACK spectral partition comparison. Here we show the
unit case dismantling results, where only eigenvectors were used for partitioning. Instead of
calling vertex cover, we only remove nodes that are covering edges on the boundary between
spectral partitions vi ≥ 0 and vi < 0. Here we observe that the ARPACK partition is not
better than the GND spectral approximation with M iterations.

Fig. 4(B), we show the spectral partitioning based on this strategy for ARPACK and GND
with M iterations. Here we also observe that the ARPACK partition is not better than the
GND spectral partition.

9

	Random numbers
	Eigenvectors
	Convergence
	Comparison of ARPACK and GND partitions

	On the generalization
	Conclusion
	Appendix
	Theoretical analysis around eigenvector optimization
	ARPACK and GND spectral approximation

